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Expansion of human pluripotent
 stem cells
Maroof M Adil1 and David V Schaffer1,2,3,4
Large numbers of human pluripotent stem cells (hPSCs) are

needed to meet the high demands of a range of biomedical

applications, including cell replacement therapies and drug

screening. Recent advances in media formulations and cell

culture platforms have addressed many previous challenges

that have hindered efficient expansion. Understanding and

addressing the remaining challenges will further facilitate the

development of technologies for large-scale hPSC expansion

and, to an increasing extent, differentiation.
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Introduction
Human embryonic or induced pluripotent stem cells

(hESCs or hiPSCs, respectively) have the potential for

indefinite expansion and may thus represent a virtually

unlimited cell source for biomedical applications includ-

ing regenerative medicine [1,2], disease modeling [3],

pharmacology and toxicology screening [3,4], and ex vivo

organogenesis [5]. However, large numbers of cells are

typically required for many of these applications. For

example, cell replacement therapies for Parkinson’s dis-

ease (PD), myocardial infarction (MI), and diabetes I

typically would likely necessitate �105–109 cells to sur-

vive post-transplantation for each patient [6–8], which

combined with 10–100 million patient populations for

these diseases [9,10], low target cell differentiation effi-

ciencies, and poor post-transplantation cell survival re-

quire �1012�16 cells to be generated for each of these

indications. Similarly, the ex vivo generation of a human

liver or heart entails �1010 cells [11]. Additionally,
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�1010 cells are required for a typical pharmacological

or toxicological screens of �106 candidates [12]. There-

fore, there is a crucial need for scalable culture platforms

that can effectively generate large numbers of human

pluripotent stem cells (hPSCs). In this review, we com-

pare enabling technologies for large-scale generation of

hPSCs, with a focus on recent culture platform (specifi-

cally 2D substrates, 3D microcarrier, suspension, and

microencapsulation cultures) advances. We highlight

the relative strengths and shortcomings of each type of

platform and discuss remaining challenges for optimal

hPSC expansion.

Advances in culture technologies
Desirable culture conditions for stem cell expansion

Stem cell fate is strongly regulated by environmental

factors [13], which for a cell culture system include both

culture medium and platform, and it is thus crucial to

design, optimize, monitor, and maintain culture conditions

for effective hPSC expansion. In general, culture systems

for the efficient, scalable, and reproducible expansion of

hPSCs should be: fully defined, xeno and feeder-free,

good manufacturing practice (GMP)-compatible, cost-ef-

fective, scalable and amenable to automation. Additionally

culture systems should: generate high yields of

pluripotent cells with rapid expansion rates, facilitate

high viability passaging and cell harvest, achieve homog-

enous cell growth and, maintain genomic stability and

avoid karyotypic abnormalities, critical for downstream

applications.

Below, we systematically list the most common types of

current culture media and platforms for hPSC expansion,

present the most recent developments of each, and dis-

cuss their features in light of the optimal criteria for hPSC

expansion listed above (Figure 1a and b).

Culture medium

For an in depth analysis of hPSC culture media composi-

tions, the reader is referred to several excellent and

comprehensive reviews [14,15]. Briefly, however, hPSCs

were initially co-cultured in serum-containing media with

feeder cell layers such as murine embryonic fibroblasts

(MEFs) that, through secreted and contact mediated

factors, offered necessary cues to support hPSC growth

[16] (Figure 1b). While the initial hESC derivation was a

landmark advance for stem cell biology and regenerative

medicine, serum and feeder layers do not meet most of

the desirable culture conditions listed in the ‘Desirable
culture conditions for stem cell expansion’ section. As a step

forward, hPSC cultures subsequently utilized feeder layer

conditioned medium (CM). Next, serum-free medium
www.sciencedirect.com
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Figure 1

Initial properties Recent advances Remaining challenges

• Easy visualization of 
morphology 

• Low expansion rate 
• Poor scalability

• Scalable
• High expansion rate 
• High surface area to volume 

ratio
• Compatible with bioreactor 

technology
• Potentially difficult cell 

harvest

• Scalable
• High expansion rate
• High surface area to volume 

ratio
• Compatible with bioreactor 

technology

• Compatible with bioreactor 
technology

• High surface area to volume 
ratio

• Reduced agglomeration
• Reduced agitation induced 

stress and differentiation
• Potentially difficult cell 

harvest  

• Defined, xeno-free, GMP 
compatible [31]

• High expansion rate [21]
• Demonstrated small-scale 

long-term culture [25,44]

• Defined, xeno-free, GMP 
compatible [65,69]

• Identification and 
optimization of culture 
parameters important for 
hPSC expansion [56-58]

• Defined, xeno-free, GMP
compatible [74]

• Demonstrated long-term, 
large-scale serial passaging 
[71-74]

• Eliminated need for agitation, 
and alleviated agglomeration 
and settling using polymer 
coculture [75,79,80,83]

• Defined, xeno-free, GMP 
compatible [91]

• Demonstrated scalability 
[86,91,95]

• High viability single-cell 
passaging and harvesting

• High expansion rate [91] 

• Automation and scale-up are difficult
• Pluripotency loss, genetic instability, and 

karyotypic abnormality after long-term serial 
passaging

• Low viability passaging and harvesting

• Agglomeration related differentiation, and 
agitation induced shear and differentiation

• Long seeding times
• Low viability passaging and harvesting
• Unverified potential for long-term, large-scale

serial passaging
• Unverified potential for large-scale automation

• Diffusion limitations in aggregate core
• Low viability passaging
• Long preclustering times
• Unverified potential for large-scale automation

• Diffusion limitations in aggregate core
• Unverified potential for long-term, large-scale

serial passaging
• Unverified potential for large-scale automation
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Feeder-layers Animal derived Fully-defined, xeno-free 

MEFs, HFFs Matrigel (rh)vitronectin, 
(rh)laminin 

Synthetic polymers 

Evolution 

(b)

e.g., MEFs, HFFs 

e.g., 
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Platforms and media for hPSC expansion. (a) Common platforms for hPSC culture and expansion: initial characteristics, advances since 2010 and

remaining challenges. (b) Evolution of culture media and substrates. Abbreviations: MEF, mouse embryonic fibroblasts; HFF, human foreskin

fibroblasts; KSR, knockout serum replacement; BSA, bovine serum albumin; rh, recombinant human.
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such as Knockout Serum Replacement (KSR) replaced

CM and fetal bovine serum (FBS) [17], though KSR still

contains animal-derived components. Subsequently,

defined media such as mTesR1 (Stem Cell Technologies)

or StemPro (ThermoFisher) enabled hPSC culture

completely independent of feeder layers or CM; however,

these formulations contain bovine serum albumin (BSA)

and are thus not xeno-free. Finally, fully-defined, xeno-

free media such as E8 (ThermoFisher and Stem Cell

Technologies) and Nutristem-SF (Biological Industries)

were developed to meet the media needs described in the

‘Desirable culture conditions for stem cell expansion’ section

and thereby facilitate controlled, reproducible large-scale

expansion. Moreover, xeno-free formulations of KSR are

also available (ThermoFisher). Extensive validation of

these fully defined, xeno-free media with a range of hPSC

lines is progressively emerging in the field.

Culture platforms

2D culture

2D culture was initially used for hPSCs [18] and to

this day remains the most widely used format

[19,20,21��,22,23��,24–26,27�,28,29�,30,31�,32–34]. Ini-

tially, 2D co-cultures (e.g., on MEFs) provided not only

soluble but also ECM components [35], but as discussed

above co-cultures are non-ideal. A major advance was the

replacement of MEFs with Matrigel [36], though this

laminin-rich mixture consists of hundreds of other ani-

mal-derived components [37], suffers from lot-to-lot var-

iability, is difficult to scale-up, and can result in loss of

pluripotency and abnormal karyotypes after repeated

serial passaging [38,39]. While Matrigel-cultured hESCs

have been utilized in human clinical trials [40], improved

platforms are needed.

Recently, researchers have worked toward xeno-free and/

or feeder-free culture substrates [22,41], which include

human cell derived feeder layers [20,22,42], chemically

defined peptide surfaces such as Synthemax [34], purified

or recombinant proteins [31�,32,33,43], and fully-defined

synthetic polymeric scaffolds [23��,28,29�,44,45]. Human

feeder layers derived from human tumors [20], as well as

human umbilical cord blood serum [26], have been shown

to support long term hPSC culture without animal-derived

substrates, though expansion rates on these platforms

need to be explored. Synthemax was used as a fully-

defined, xeno-free alternative to Matrigel, though initial

reports indicated a modest �4� fold expansion per

3–4 day passage, or a 41 h doubling time [34]. In contrast,

hPSCs grown on defined, feeder-free substrates such as

laminin 511 [43], nanofibrous gelatin [30], and nanocrystal-

line graphene [29�] demonstrated mean doubling times of

�30–37 h that are similar to Matrigel, still a standard in the

field [27�,29�,30,43,44]. Furthermore, these new, defined

substrates were able to maintain pluripotency over several

month long culture, as assessed via a range of assays

(Figure 2) [19,32,43,44]. Moreover, the ROCK inhibitor
Current Opinion in Chemical Engineering 2017, 15:24–35
Y27632 (RI) has been shown to increase survival of disso-

ciated hPSCs [46,47], thereby leading to high viability

passaging [19,32]; however, viability of single-cell passage

onto Matrigel is still low [32]. Miyazaki et al. showed that

recombinant laminin in combination with RI interestingly

support high viability, single-cell passage on 2D, achieving

a 200-fold expansion in 30 days [32]. Additional studies

could further confirm this trend.

2D substrates based on recombinant proteins or synthetic

peptides represent significant biological and biotechnolog-

ical advances, though economic considerations can chal-

lenge their scale-up [25]. As alternatives, fully-defined,

synthetic substrates — including synthetic heparin poly-

mers [44], nanocrystalline graphene [29�], polysulfone

[21��] and synthetic zwitterionic polymer hydrogels

[25] — may be more economical to produce on a larger

scale, though preparation of some materials (e.g. nanocrys-

talline graphene) may be technically challenging. Synthet-

ic substrates may also have lower lot-to-lot variability than

Matrigel, and importantly for hPSC expansion, maintain

hPSC pluripotency in long-term cultures [21��,29�]. In

general, high serial expansion rates can be a major chal-

lenge for 2D cultures, with reports of 4–10� expansion per

4–6 day passage [19,27�,34] or mean doubling times of

>35 h [29�,34,43,44] (Figure 2). Through serial passaging

hPSCs as small clusters on a defined, 3,4-dihydroxy-L-

phenylalanine (DOPA) coated polysulfone membrane

with mTeSR1 medium [21��], however, Kandasamy

et al. attained a 20–30 fold expansion per 6 day passage,

a substantial improvement over conventional 2D culture.

In other interesting progress toward synthetic substrates,

Celiz et al. demonstrated that powerful high throughput

screening techniques could be applied to �1000 member

combinatorial libraries of synthetic polymer candidates to

identify an optimal substrate for efficient hPSC expansion

using StemPro and mTeSR1 media [23��]. Moving for-

ward, using fully defined, xeno-free media such as E8 and

Nutristem with these recent advances will be beneficial.

Recent advances in 2D platforms have thus attained

many desirable culture criteria outlined in the ‘Desirable
culture conditions for stem cell expansion’ section — fully

defined media and substrate, GMP compatible systems

capable of maintaining long-term pluripotency and geno-

mic stability, and in some cases achieving high expansion

rates — compared to poorly defined substrates [16]. How-

ever, 2D platforms may be difficult to scale up [48], and

for example generating �1013 cells needed to treat PD

would require �1,000,000 T75 flasks or �10 soccer fields

worth of cell culture area. Automation of 2D cultures is

possible with technologies such as Cell Factory and

accompanying robotic Cell Factory manipulators (Ther-

moFisher) [49,50]; however, such systems would still

require substantial high quality laboratory space to gen-

erate clinical scales of hPSCs for many applications

[51,52]. Also, to date most defined 2D culture platforms
www.sciencedirect.com
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Figure 2

Culture method Cell lines 

Base 
medium 

condition 

Max. no 
of 

passages 

Longest 
time in 
culture  

Max 
culture 
volume 

(ml) 

Fold 
expansion

/time 

Fold 
expansion
/passage 

Mean 
division 
time (h) Pluripotency tests Ref. 

Vitronectin, cluster passage hESCs: MEL1, MEL2, hES3 

StemPro, 
without 
ascorbate 10 - - - - - Karyotyping, EB, teratoma, 33 

Laminin 511, cluster passage 
hESCs: H1, H9, HS207, 
HS420, HS401 O3, H3 28 150-180d  -     ~36 

ICC, qPCR, WB, karyotyping, EB, 
teratoma 43 

UV treated polystyrene, single 
cell passage 

hESCs: BG01, WIBR1, 
WIBR3, hiPSCs DMEM >10 >150d  - 1250x/18d 10 - ICC, karyotyping, teratoma 19 

Laminin E8, single cell passage hESC: H9 mTesR1 35 ~175d  - 200x/30d - - Flow, karyotyping, EB, teratoma 32 

Porous PE membrance scaffolds 
coated with matrigel, cluster 
passage hESC: H9 mTesR1 5 ~15-20d -     26 ICC, qPCR 28 

Synthemax, cluster passage 
hiPSCs: IMR90, GIBCO 
Episomal mTesR1 12 120-150d  - 4x/3-4d ~4 41.2 34 

Human tumor derived matrix, 
cluster passage 

hESCs: FES 29, H9, hiPSCs: 
HEL 11.4 StemPro 15 - - - - - 

ICC, qPCR, karyotyping, EB, directed 
neuronal and hepatocyte 
differentiation, teratoma  20 

Hydrogel based matrix with 
synthetic heparin polymers, 
cluster passage 

hESCs: HUES9, HUES6; 
hiPSC StemPro 20 >240d  - - - 38 ICC, qPCR, karyotyping, EB 44 

Vitronectin peptide decorated 
poly vinyl alcohol/hyaluran 
nanofibers, cluster passage 

hiPSCs (Guanzhou 
Institutes of Biomedicine 
and Health) mTesR1 0 5d - - - - qPCR 24 

Zwitterionic hydrogel, cluster 
passage 

hiPSCs: human foreskin 
fibroblasts and human 
gingival fibroblasts 
derived 

human cell 
conditioned 
medium 
(GlobalStem) - 270d  - 170x/270d - - 

ICC, qPCR, WB, karyotyping, EB, 
teratoma 25 

Nanofibrous gelatin, cluster 
passage 

hESCs: H1, H9; hiPSCs: 
(253G1) mTesR1 20 ~90d  - - - ~30 

ICC, qPCR, flow cytometry, AP, 
karyotyping, EB, RNAseq 30 

LN521, cluster passage 
hESCs: HUES7; hiPSCs: 
human fibroblast derived  

E8, Nutristem, 
mTeSR1 10 ~50d   - - - - 

ICC, qPCR, AP, karyotyping, EB, 
teratoma 31 

Polysulfone coated with DOPA, 
cluster passage 

hESCs: Hues7, H1, H7; 
hiPSCs: hFib2-iPS4, iPS-
IMR90-4 mTesR1 10 60d  - 20-30x/6d 20-30 - ICC, qPCR, karyotyping, teratoma 21 

Matrix derived from human 
umbilical cord blood serum, 
cluster passage 

hESCs HN4; hiPSCs: 
DYP0530 KO-DMEM 10 ~50d - - - - 

ICC, qPCR, karyotyping, EB, 
teratoma 26 

Synthetic polymeric material, 
cluster passage hESC: HUES7; hiPSCs: BT1 

StemPro, 
mTeSR1 5 15d  - - - - 

ICC, karyotyping, directed 
differentiation of germ layers 23 

Vitronectin modified polymeric 
hydrogels, cluster or single cell 
passage 

hESCs: WA09; hiPSCs: 
HPS0077 mTesR1, E8 20 - - - ~10-15 - ICC, AP, EB, teratoma 27 

Polymeric nanofibrous 
substrates, cluster passage 

hESCs; hIPSCs: HES9-EOS, 
IPSC-C11 mTesR1 0 56d - - - - 

ICC, qPCR, flow cytometry, 
karyotyping, EB  45 

Graphene, cluster passage 
hESCs:H9; hiPSCs:NSC 
derived KO-DMEM 10 - - - - 37 

ICC, qPCR, karyotyping, EB, 
teratoma, RNAseq 29 

2D
 s

u
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(a)

Trimethyl ammonium coated 

polystyrene beads, static 

culture, single cell or cluster 

passage hESCs: ESI-017 KO-DMEM 6 

42d LT; 5d 

LS 80 14x/42d 3 - 

ICC, qPCR, spontaneous and 

directed differentiation into 3 

germ layers 54 

MEF or Matrigel coated MC, 

dynamic suspension culture, 

single cell passage  hESCs: H1, H9 MEF CM ~10-11 

>60d LT 

LS 60 - - 35 

ICC, flow cytometry, 

karyotyping, spontaneous 

differentiation into 3 germ 

layers 62 

Matrigel coated MC, dynamic 

suspension culture, cluster 

passage hESCs: HES2, HES3 

CM, 

mTesR1, 

StemPro 25 

180d LT;  

49d LS  50 - - 21 

ICC, flowcytometry, 

karyotyping, EB, teratoma 56 

Laminin and Vitronectin 

coated MC, static culture, 

cluster passage  hESCs: HES3, H7 StemPro 20 140d LT 

6 well 

plate 

(2ml) 8.5x/7d 8.5 -  ICC, karyotyping, EB, teratoma 68 

Vitronectin coated MC, 

dynamic suspension culture, 

single cell passage  

hESCs: H9; hiPSCs: 

IMR90 

mTeSR1, 

TeSR2 5 30d LT LS 50 24x/6d 24 - 

ICC, flow cytometry, 

karyotyping, EB 63 

Matrigel coated MC, dynamic 

suspension culture, cluster 

passage  LT static hiPSCs: IMR90 mTeSR1 10 

70d LT; 7d 

LS 100 20x/7d 20 35.8 

ICC, EB, karyotyping, directed 

differentiation 58 

Trimethyl ammonium coated 

MC (Hillex II), dynamic 

suspension culture, cluster 

passage  hESCs: H9 

KSR-XF, 

BRASTEM 0 11d LS 60 - - 25.3 ICC, flow cytometry, EB 65 

pLL, Vitronectin, Mouse 

Laminin coated MC,  

hESCs: HES3, H7; 

hiPSCs: IMR90 mTeSR1 3 21d LS 50 15x/7d 15 -  ICC, flow cytometry, EB 64 

Laminin 521 coated MC, 

dynamic suspension culture. 

single cell passage  hESCs: HES3 mTeSR1 10 

70d LT; 7d 

LS 50 7.5x/7d 7.5 26 ICC, karyotyping, EB 57 

Vitronectin coated MC, 

dynamic suspension culture, 

cluster passage  

hiPSCs: Gibco CD34 

derived  E8 0 7-11d LS 50 - - - 

ICC, qPCR, flow cytometry, EB, 

directed differentiation, 

karyotyping 69 

3D
 m
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ro
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rr

ie
rs

 

(b)
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Figure 2.

Dynamic suspension culture, 
cluster passage 

hESCs: I4, I5, I6, H9.2,  H7, 
H9,H14; hiPSCs: iF4, 
J1.2.3, C3, C2, KTN7, 
KTR13 

DMEM/F12 + 
KSR 58 

>365d LT; 
90d LS 25 25x/10d - 35 

ICC, flow cytometry, karyotyping, 
EB, teratomas 70 

Dynamic suspension culture, 
cluster passage hESCs: HES1, HES2, H7 Neurobasal 10 70d LT 

12 
well(~2ml) 100x/35d - 24 ICC, karyotypiing, EB, teratomas 84 

Dynamic suspension culture, 
single cell passage hESCs: HES3; hIPSCs mTesR1 20 80d LT  LS 25 4-6x/4d ~4-6 - 

ICC, qPCR, flow cytometry, EB, 
karyotyping, microarray 71 

Dynamic suspension culture, 
single cell passage hESCs: H9 mTesR 3 21d LS 100 25x/6d 25 35 

ICC, flow cytometry, karyotyping, 
teratoma 80 

Dynamic suspension culture, 
single cell passage hESCs: hES2, hES3 mTesR1 5 

35d LT; 7d 
LS 50 0.3-2x/7d 2 - 

ICC, flow cytometry, karyotyping, 
directed cardiomyocyte 
differentiation, teratoma 81 

Dynamic suspension culture, 
single cell passage 

hESCs: Royan H5 and 
Royan H6; hiPSCs: hiPSC1 
and hiPSC4 

DMEM/F12 
+/- MEF CM 10 

70-100 d 
LT LS 100 8x/7-10d 8 - 

AP, flow, spontaneous 
differentiation 72 

Dynamic suspension culture, 
single cell passage hESCs: H9 StemPro 21 64d LT LS 60 

1.3e13x/60
d 4.3 29.3 

Flow cytometry, karyotyping, EB, 
directed cardiomyocyte 
differentiation, teratoma 73 

Dynamic suspension culture, 
single cell passage with aggregate 
seeding hiPSCs: hCBiPSC2 mTesR1 1 7d LS 100 5.5x/7d 5.5 - 

ICC, flow cytometry, spontaneous 
differentiation 76 

Dynamic suspension culture, 
single cell passage hiPSCs: TNC1, BC1 E8 25 ~75d LT, LS 

100ml 
capacity 

2.4-3.5x/3-
4d 2.4-3.5 - 

ICC, flow cytometry, karyotyping, 
EB, teratoma 74 

Dynamic suspension culture with 
thermoresponsive worms, cluster hESCs: H9; MEL1, MEL2, 
passage NKX2-5 

AEL, Stempro 
hESC SFM - 18d LT - 30x/18d 3 - 

Flow cytometry, qPCR, karyotyping, 
EB 83 

Dynamic suspension, cluster 
passage 

hESCs: Khes-1, H9, 253 
G1, HES3 mTesR 8 

40d LT; 5d 
LS 2.00E+02 

1e6-
1e7x/40d ~10-20 - ICC, karyotyping, EB, teratoma 79 

3D
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g
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g
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(c)

Encapsulation in alginate 

capsules, continuous culture hESCs: H1 DMEM ,KSR 0 

260d LT, 

no 

passage - - -  - 

ICC, qPCR, differentiation to 

neurons and chrondocytes 85 

Encapsulation of single cells 

in alginate beads hESCs: H9 

KSR, MEF-

CM 1 15d LS 

125ml 

capacity 9x/15d 9 - 

Directed cardiomyocyte  

differentiation 95 

Encapsulation of 

microcarriers in alginiate 

beads hESCs: SCED461 MEF-CM 1 20d LS  100 20x/20d 20 - ICC, flow, EB 86 

Alginate microfibers, small 

cluster passaging after 

enzyme digestion of gel 

hESCs: BGO1V, HUES7; 

hiPSCs: hFib2-iPS4, PD-

iPS5 mTeSR1 10 60d LT - 10x/ 6d 10 27-34 

AP, flow cytometry, 

karyotyping, spontaneous 

differentiation, teratoma 93 

Encapsulation of single cells 

in pNIPAAm-PEG hydrogels, 

single cell or cluster passage 

hESCs: H1, H9; hiPSCs: 

iPS-MSC, iPS-Fib2 E8 60 

280d LT; 

5d LS 60 

10-20x/4 

or 5d 20 - 

ICC, karyotyping, EB, directed 

differentiation to dopaminergic 

neuron progenitors, 

cardiomyocytes, endoderm 

progenitors, teratoma 91 
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(d)
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(Figure 2. Continued) Summary of recent hPSC expansion technology. (a) 2D substrates (b) 3D microcarriers (c) 3D aggregates and (d) 3D

microencapsulation. Abbreviations: CM, conditioned medium; LT, long term serial passage; d, days; m, months; LS, large-scale expansion model

in stirred flasks; ICC, Immunocytochemistry; AP, alkaline phosphatase activity; EB, embryoid body. Values for the different columns, when not

explicitly stated within the cited article, were calculated when possible based on the available data. Longest times in culture were distinguished

between long-term culture (LT), and large-scale expansion (LS).
involve relatively modest expansion rates (e.g., �4–10�
per passage, Figure 2), can entail potentially harsh me-

chanical or enzymatic passaging that can compromise cell

viability [19], and are associated with inhomogeneous

rates of cluster growth. Further work is needed to address

these challenges, particularly as hPSC-based therapies

progress toward larger clinical trials and eventually to

commercialization.

3D culture platforms

3D microcarrier-based
A long-standing approach in bioprocess engineering —

such as for recombinant protein and monoclonal anti-

body production — is to scale up to 3D cultures rather

than scale out on 2D surfaces [53]. hPSC cultures were
Current Opinion in Chemical Engineering 2017, 15:24–35
first transitioned from 2D surfaces to 3D by using

microcarriers (MCs) [54], which offered a significant

increase in surface area to culture volume ratio over 2D

platforms [48,55] and thus offered the potential for

considerable savings in consumable resources and

cost-effective scale up [56,57�]. For example, a

100 ml culture with 0.3 g of cytodex 1 (�1e6 MCs)

can provide as much surface area as 20 T75 flasks. With

this 2–6-fold increase in yield (i.e., the number of cells

generated per volume of culture medium) compared to

2D cultures [56,57�,58], MC-based suspension cultures

have been reported to significantly reduce matrix and

medium costs [57�]. Additionally, MCs are compatible

with dynamic (stirred or perfusion reactors) cultures

[59�], which are often used for biomanufacturing and

have thus been well-developed for efficient, automated
www.sciencedirect.com
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scale-up with real-time monitoring of parameters (e.g.,

oxygen concentration, pH) important for hPSC expan-

sion [55,60]. Continuous removal of metabolic bypro-

ducts, inhibitory cytokines, or pro-differentiation

autocrine factors in continually perfused dynamic cul-

tures may also aid the expansion of pluripotent stem

cells [61] and mitigate DNA damage, genetic instabili-

ty, and karyotypic abnormality [38]. Thus, MC cultures

scaled up to 50–100 ml batch spinner flasks allowed a

20–24�-fold expansion in some instances and main-

tained �80% pluripotency and genetic stability for

several weeks [56,58,62,63].

However, MC cultures have faced several challenges.

For example, MCs were initially coated with poorly

defined feeder layers (e.g. MEFs) [62] or animal-derived

substrates (e.g., Matrigel, or animal derived laminin)

[56,58,62,64]. Also, low initial cell attachment and long

incubation times for hPSC seeding on MCs (termed the

seeding or adaptation period) [62,65], agglomeration and

agitation related stress [62,66], and agitation-induced

differentiation [58,67] generally reduce the effectiveness

of these platforms for hPSC expansion. Agitation rate is

an especially important parameter that must be appro-

priately tuned if possible to balance between agglomer-

ation and aggregate settling, and shear stress related cell

damage.

Recent developments have addressed several of these

concerns and thereby improved MC-based hPSC suspen-

sion culture. In parallel with advances discussed in the

‘2D culture’ section above for 2D platforms, fully defined,

xeno-free substrates such as recombinant vitronectin

and laminin have been used for coating MCs

[48,57�,65,68,69�]. Additionally, the use of defined, adhe-

sion-promoting laminin or vitronectin derived peptide

coatings significantly increased hPSC attachment and

reduced seeding time [57�,63]. Interestingly, defined

coatings also resulted in faster hPSC doubling times

[57�,65] compared to Matrigel or MEF coatings [58,62].

For example, using vitronectin-coated MCs and single-

cell passaging, Fan et al. reported a 24-fold expansion per

passage and successful culture in dynamic suspension for

a month [63]. Furthermore, MC culture parameters that

may further increase hPSC expansion efficiency — such

as agitation speed, initial static culture period, cell seed-

ing density, and feeding rate — were identified and opti-

mized [56,57�,58]. For instance, Bardy et al. effectively

doubled the hPSC expansion rate and obtained a 20� fold

expansion over 7 days using MC cultures in stirred

spinner flasks by doubling the feeding rate [58].

However, MCs encounter at least some of the disadvan-

tages of 2D cultures. For example, cells must be chemi-

cally or mechanically harvested from MCs [69�], which

reduces cell viability, lowers yield, and is a particularly

difficult process for porous beads [48]. Furthermore,
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extended, long-term, dynamic suspension culture has

not been demonstrated with MCs, as most studies report

expansion for a few weeks [54,57�,58,65,69�]. Further-

more, demonstrating compatibility with automation tech-

nology will be particularly useful. Addressing these

remaining challenges will encourage wider use of this

promising, well-documented technology.

Self aggregates

Another well-established 3D format is suspension culture,

where hPSCs are suspended as dissociated single cells,

preformed aggregates, or small clusters and propagated

under static or dynamic conditions. Similarly to MC cul-

tures described in the ‘3D microcarrier-based’ section, ag-

gregate cultures can also utilize bioreactor technology,

facilitating efficient volumetric scale-up. Two main ben-

efits of suspension culture over MCs are: the demonstrated

capacity for extended long-term passaging in dynamic

cultures, which are ultimately necessary for bioreactor

mediated scale-up [70], and the lack of need for a static

seeding/adaptation period [71]. hPSCs cultured in dynam-

ic suspension in stirred flasks have reportedly maintained

pluripotency and genetic stability for months [70–74],

while attaining a modest 2–8-fold expansion per passage

every 4–7 days [71–74].

3D aggregate cultures initially faced several challenges.

This included reduction in cell viability due to shear-

related stress from agitation or from surface foaming [75],

as well as agglomeration and settling of cell clusters

[76,77]. Also, large clusters formed that posed diffusion

limitations, uncontrolled differentiation, and necrosis in

the aggregate cores [70,78]. Furthermore, expansion rates

were reduced possibly due to the acidic conditions and

reduced oxygen concentrations that accompany rapid

metabolism [76]. Finally, there was a need for initial

aggregate formation, requiring long pre-clustering times,

before inoculating large-scale dynamic cultures.

Several approaches were suggested to solve these issues,

including addition of anti-foaming agents such as pluronic

to reduce bubbling related shear stress at the air-medium

interface [75], both addition of viscous polymers to reduce

aggregate settling and culturing within gas-permeable

membranes to minimize the need for stirring [79��], steric

hindrance agents to reduce aggregation [79��], and repeat-

ed frequent passaging as single cells to control aggregate

growth [80]. These advances increased proliferation rates

in 3D suspension cultures, achieving 20–25-fold expan-

sion per 5–6 days passage for specific cell lines [79��,80].

Furthermore, addition of ROCK inhibitor to culture me-

dium, as discussed earlier in the ‘Culture medium’ section,

facilitated passaging as single cells and thereby allowed

more homogenous, controlled growth rates [70,75,81,82].

In a unique approach, Chen et al. mixed dissociated hPSCs

and a vitronectin decorated thermoresponsive polymer to

rapidly generate hPSC-polymer aggregates. Suspension
Current Opinion in Chemical Engineering 2017, 15:24–35
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culture of these aggregates avoided the need for long

pre-clustering times and resulted in enhanced expansion

in suspension culture compared to hPSC self-aggregates

[83��].

Recent technologies have thus addressed many, but not

all, of the initial challenges listed above for suspension

culture. Persistent problems include undesirable necrosis

and uncontrolled differentiation within larger aggregates

and the need for aggregation before initiating large-scale

cultures. Furthermore, dissociated hPSCs do not survive

well in suspension culture (even in the presence of ROCK

inhibitor), with<50% post-passage cell viabilities in some

cases [81,82,84]. Demonstrating the potential for automa-

tion is also needed. Future advances may further increase

the applicability of this culture format for large-scale

hPSC expansion.

3D microencapsulation
Another 3D culture method is hPSCs microencapsulation

into polymer matrices such as alginate [85,86], hyaluronic

acid (HA) [87], chitosan-alginate complex [88] or poly

(lactic-co-glycolic acid)-poly(L-lactic acid) copolymers

[89,90]. In this method, hPSCs are homogenously mixed

with a polymer(s) as single cells or as small aggregates,

and a polymer gelation process then encapsulates the

cells into polymeric particles, for example ones shaped as

spheres or ‘worms’ [86,91–93]. In addition to benefiting

from the general advantages of 3D culture, microencap-

sulation reduces both agglomeration and the adverse

effects of agitation related shear [86,91]. Moreover, micro-

encapsulation within a solid phase material offers the

potential for precise control over multiple features of

the cellular microenvironment, such as tuning biochemi-

cal and mechanical cues to mimic those of the natural

extracellular environment [94].

Several challenges faced by microencapsulation are: effi-

cient retrieval of cells from the polymer matrix at the end

of a culture, which can entail harsh enzymatic or mechan-

ical treatments detrimental to cell viability [53], the need

for validation with fully defined media, and potential

diffusion limitation within a polymer gel that could affect

differentiation and survival, which is an issue also faced

by 3D aggregate cultures. To address the diffusion limi-

tation problem, aggregates need to be regularly passaged

as single cells or small aggregates [80], similar to 3D

aggregate cultures. Thus, it is crucial for the polymer

system to be amenable to easy, repeated passaging.

PLGA is a convenient matrix for hPSC growth and

differentiation for subsequent transplantation, but does

not readily allow serial passaging for expansion [90]. In

contrast, cells have been successfully retrieved from HA

matrices with >70% viability; but the typical enzymatic

treatment required for cell extraction may be detrimental

to cell viability [87]. Similarly, cells encapsulated within
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alginate capsules were retrieved by the simple addition of

a chelating agent, making this platform effective for cell

harvest [85,86], though of cell viability post-harvest was

not reported. Additionally, repeated, serial passaging of

hPSCs encapsulated within HA or alginate beads has not

been demonstrated, passaging as single cells in 3D en-

capsulated polymer matrixes have typically resulted in

significant reductions in cell viability, and fully-defined

media have not yet been tested with such microencapsu-

lation materials [85,86,95].

The recent application of stimuli-responsive polymers to

3D culture of stem cells has addressed several remaining

challenges [91]. As discussed earlier, one challenge in 3D

aggregate culture is diffusion limitation, requiring fre-

quent passaging of hPSC clusters as single cells. We

recently found that thermoresponsive polymers such as

poly-N-isopropyl-poly-acrylamide (pNIPAAm) facilitate

cell retrieval without harsh mechanical or chemical treat-

ment to dissociate the gel and thereby allows repeated,

high viability cell passaging and final cell harvest [91].

Another potential drawback of 3D aggregate suspension

cultures is the need for reaggregation following single cell

passage, which not only increases process time but leads

to heterogeneous cluster formation and issues associated

with large aggregates. In contrast, pNIPAAm-PEG effi-

ciently supported single cell passaging [91], thereby

eliminating the need for reaggregation and benefiting

from clonal expansion. Repeated, high viability, single-

cell passaging combined with high expansion rates of

�20-fold per passage led to �1072 fold expansion over

60 passages within the thermoresponsive platform in

fully-defined medium, and the cells maintained high

levels of pluripotency and genetic stability [91]. Subse-

quent work indicated that the thermoresponsive polymer

compared favorably to hPSC culture in suspension as self-

aggregates or encapsulated within alginate or agarose

beads [91,96��]. Furthermore, we have found that hPSCs

encapsulated within this polymer can be differentiated

into a range of functional cell types for a variety of

applications, including midbrain dopaminergic neurons

and oligodendrocyte progenitor cells for regenerative

medicine in PD and spinal cord injury respectively (Adil,

Rodrigues et al., submitted). Moving forward, demonstra-

tion of automated long-term maintenance of material-

encapsulated hPSC cultures should facilitate scale-up of

this promising technology.

Conclusion
We have discussed recent advances in culture medium

and platform technologies for hPSC expansion. While

hPSC culture conditions initially included undefined com-

ponents of animal origin, involved modest expansion rates,

and maintained pluripotency to a limited extent after long-

term expansion, recent advances in both the soluble and

solid phases of culture systems have enabled effective

large-scale hPSC expansion can be achieved under
www.sciencedirect.com
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completely defined, xeno-free conditions (Figure 2). The

current capabilities of the different platforms are summa-

rized in Figure 1, and resolving the remaining challenges

listed in the ‘2D culture’ and ‘3D culture platforms’ sections

may further facilitate effective hPSC expansion.

Knowledge accumulated from different culture systems

may inform future platform design and help realize hPSC

expansion platforms that address a range of desirable

criteria. For example the recent defined, xeno-free poly-

meric substrates developed for 2D cultures — in addition

to methods to reduce agglomeration, cluster settling, and

shear stress for 3D suspension cultures — may be

adapted to improve 3D MC cultures. Moreover, coating

MCs with cell-adhesive ligand modified (Section ‘2D
culture’) or stimuli-responsive polymers (Sections ‘3D
microcarrier-based’ and ‘Self aggregates’) may also prove

beneficial, especially during cell harvest as demonstrated

for other adherent cell lines [97,98].

Moving forward, more stringent quality assessment of

hPSC expansion products may prove useful. As discussed

in the ‘Desirable culture conditions for stem cell expansion’

section, in addition to high expansion rates, the end

product of hPSC expansion should maintain a high level

of pluripotency and genetic stability. Recently genetic

variability in hPSCs and epigenetic changes following

long-term culture have been reported [99,100]; however,

many stem cell expansion studies do not include exten-

sive tests of population variability (Figure 2). Current

standards for quality control of stem cell expansion in-

clude immunocytochemistry and qPCR for a handful of

pluripotency markers, embryoid body formation, and

in vivo teratoma assays. In addition to these assays for

pluripotency, more stringent monitoring of the stem cell

fate during long-term culture and expansion will be

needed as concepts progress toward products. Even re-

cently, the most stringent pluripotency test applied is

teratoma formation (Figure 2) [101]. Given that relatively

small cell numbers are needed to form tumors in immu-

nodeficient mice [101], this approach may not report the

pluripotency of the entire hPSC population. While immu-

nocytochemistry or flow cytometry can determine the

fraction of the population expressing conventionally ac-

cepted pluripotency markers such as OCT4, SSEA1, and

NANOG, it is challenging to use these techniques to

effectively monitor the expression of (or identify) all the

markers potentially responsible for population heteroge-

neity. Recently, total RNA expression of some hPSC

expansion cultures has shed light on differentially

expressed genes between different culture conditions

[29�,30]. As a step toward improved quality control,

incorporating assays to investigate a larger portion of

the stem cell transcriptome rather than a few known

pluripotency markers will be useful. Furthermore, higher

resolution techniques such as single-cell RNA-seq

[102,103] will undoubtedly offer future, deeper insights
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into population heterogeneity. Thus, eventual inclusion

of single-cell transcriptome and epigenome analysis into

the array of required pluripotency tests could conceivably

better assess the quality of expanded hPSCs and further

improve safety standards.

In summary, many of the challenges facing large-scale

expansion of hPSCs have been addressed over the past

several years, owing especially to advances made in 3D

culture technologies. Moving forward, it will be key to

efficiently automate these new technologies to facilitate

reproducible, cost-effective scale-up to an industrial lev-

el, while in parallel reducing hPSC population heteroge-

neity by appropriately designing culture conditions

informed by new stem cell biology knowledge.
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